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summary

A unified analysis for planar transmission lines is pre-

sented, which needs about 2 orders of magnitude less

computer time than the spectral domain method. It is

applied to various microstrip–lines and to fin–lines.

Introduction

This contribution deals with a rigorous and efficient

analysis of planar transmission lines and its applica–
tion to fin-lines. Its main difference to existing

methods (the spectral domain technique or the method

Of autonomous multimodal blocks2) is a reduction in
computer time of about two orders of magnitude. Hence,
it should be well suited for a computer–aided design

of microwave planar circuits.

Analysis

The structure which has been analyzed consists of an
arbitrary number of metallic strips which are deposited

on either side of a dielectric substrate. This planar
circuit may be mounted either in the H-plane or in the
E–plane of a rectangular box. Hence, the structure can

be specialized to represent a microstrip line, coupled
striplines, a slot line, a coplanar line, a microstrip
line with tuning septums, a bilateral, unilateral, or
antipodal fin–line, and a multi–slot fin-line. For ex–

plaining the calculation procedure, the cross–section
of the latter is shown in Fig.1. The metallic strips

are assumed to have finite thickness. This eliminates,
on one hand, the existence of field singularities due

to an edge condition while it is furthermore realistic
at frequencies in the upper mm-wave range.

Fig.1 Cross–section of a general fin–line

The eigenmode analysis starts with the well–known mode-
–matching method, which shows some important advantages

over other methods: Its final equations can be interpre-

ted physically. This allows simplifications of great
consequences as will be shown below. Moreover, the
method can also directly be applied at the cutoff–fre–

quency. An inherent disadvantage is, however, the poor
convergence of the solutions. It was the main task of
our investigations to remove this restriction.
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In the analysis, the cross-section is divided into 7 re–
gions with 8 boundaries separating these regions from

one another. Due to the dielectric substrate, the field

is hybrid and can be calculated from 2 scalar potential
functions. These functions are written down for every

sub–region and matched at the various interfaces. This
yields enough relations to determine the unknown ex–
pansion coefficients. It turns out that the expansion

coefficients of the slot regions and of the dielectric

region can be eliminated and explicitly related to the
expansion coefficients of sub-region 1 and 7. This
yields the following homogeneous system of equations:

Af=ZX F(t,p); Gg=ZX F (t,p); t= 0,1,2...
tt pp,ll tt pp,77

(HE-modes), (1)

X7 =ZYtt pp,171(t,p); FE=xY F(t,p); t= 1,2...
ttpp,77

(EH-modes), (2)

Here A~, G+,~t, ~t, mean the expansion coefficients of

the HE-modes and the EH-modes in sub–regions 1 and 7,
respectively. Xt and ~t are linear combinations of these

coefficients. f t, gt etc. contain the freguency depen-

dence. The abbreviations Fl, F ~1, and~
7’

~ depend only

on geometric parameters and not on frequency. They can

be written as

F1(t,p)=Z Zfi(t,s) fi(p,s) b/di=XF .
s

(3)
is i

Here b means waveguide height and di means width of the

i–th slot. The function fi(p,s) belongs to the i-th

slot. It is given by

[

P2 .

2
(-1) . +d )/b)–sin(pln.bi/b)sm(pln(bi i

fi(P1,P2)=p~
l-(p;/p~)(b2/d;)

1

if p1di~p2b,

‘d: C0S(p2TI bi/di) if pldi=p2b,

2d .
fi(o,o)=+ . (4)

bi means distance between slot and bottom wall of the

waveguide housing. (pl andp2 are integer.)

The computer time can be reduced by utilizing that F~

depends on the summation index s as shown in Fig.2. Fs

monotonically increases up to a maximum value which is
achieved at sm. Differentiating (3) with respect tO s

yields

‘~mdilb ~ (5

For s> Sm, Fs strongly decreases and can be neglected

when s exceeds sm+As. As depends on the ratio of the
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slot width to the waveguide height. a unilateral fin-line versus frequency. Hence, it suf–

fices in any case to calculate ke twice (e.g. at cutoff

F~

I

Fig.2Fs of equ. (3)

the integers p

(5)).

versus integer S; parameter are

and t and the slot width di (equ.

The propagation constant is found by equating the deter–
minant of the homogeneous system (1 ) and (2) to zero.

AS an example, numerical results are compared with pub–
lished values in Table 1. The agreement is excellent.

f number k/k k/kz/3/
z

GHZ of terms

6 0.397’7
5 10 0.3972 O.LO

15 0.3968

6 0.3731
15 10 0.3725 0.38

15 0.3721

Approximations

Calculation at cutoff. Up to now,

verY large. Moreover, one must be

Table 1:
Microstrip with
tuning septum, com–
parison with Refer–

ence 3

the computer time is
very careful in order

not to overlook one or the other zero of the determi-

nant. Both restrictions can be removed. The first step
is to replace the analysis by a calculation at the cut–

off-frequency of every mode. Then the HE–modes are re–
duced to pure TE-modes and the EH–modes to pure TM-

modes. Equations (1) and (2) are then decoupled and can
separately be solved. Equating their determinants to
zero yields the cutoff-frequencies . The propagation ~on–
Stants can be calculated from the cutoff-frequencies by

utilizing the concept of an equivalent dielectric con–

stant ke, which has been defined in Reference 4. Our

calculations have proven that the equivalent dielectric
constant is nearly constant versus frequency as has

been claimedk provided that the relative dielectric con–
stant s of the substrate material is only small. The

r

substrate material, which is often used, is RT-duroid
with Er= 2.22. In this case, ke may be assumed to be

constant. It can then be calculated from its definition
4

as the squared ratio of the cutoff wave number for Cr.l

to that obtained for the actual cr.

The concept of an equivalent dielectric constant is jus–
tified by this feature alone. Moreover, the numerical
calculations show that this quantity is of large prae–
tical importance even for arbitrary permittivities, be–
cause it depends on frequency linearly. This is proven

in Fig.3 showing the equivalent dielectric constant of

and at the upper band edge). The dispersion relation
can then easily be formulated and evaluated.

______________
2,6 J

}
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2,2
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}’
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Fig.3 Equivalent dielectric constant of a unilateral
fin–line versus frequency; parameter is the per-
mittivity of the substrate.

A comparison between such approximations to the propa-

gation constant and exact values shows that the assump-

tion of a linearly frequency dependent equivalent die-

lectric constant is justified. This is illustrated by
the results presented in Table 2.

2 f

b kz 25 40 GHZ

0.0
approx. 0.519 0.890
exact 0.523 0.897

0.3
approx. 0.391 0.803
exact 0.392 0.809

Table 2: Comparison between approximate and exact propa–
gation constants k of a unilateral fin–line

z
with one (d2= O) and two slots for different

frequencies f (dl=O.lb, sr= 2.22)

Relation between fundamental and higher–order modes.

Using this approximation, the computer time is reduced
by a factor of I:N, with N being the number of inter–
esting frequencies. The cutoff–frequency of every wanted

eigenmode must, however, still be calculated. This can
be avoided by the second step of our approximate method,
which establishes a relation between all higher–order

modes and the fundamental mode. This shall be demon–
strated for the unilateral fin-line. Let us concentrate
on the TE –modes. Then (1 ) reduces to

Af=XX F (t,p) ,
tt pp,ll

(6)

which can also be written in the following way:

Atft = X
p,,%,, .

.ZF (t,p) X
t,lp 1 (7)

Its solution reads

x t ,= Atft/ZF1(t, p) X
, p,l%,l=%ft .

(8)

It turns out that Kt is nearly constant with respect to

index m and also with respect to index p or n, respec-

tively. This has been proven numerically for all sets
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of parameters investigated. The physical explanation of

this effect can also be given. It can namely be shown
that Kt is proportional to the fringing field capaci–

tance which is due to the metallic fins. This capaci-
tance does not, however, depend on the mode number.

The calculation of the cutoff-frequencies can now be
performed in the following way: The characteristic equa-

tion is exactly solved for the fundamental mode. Thus

also K is fixed, Then (8) represents a closed-form SO–
t

lution for all higher-order modes, Thus the computer
time has been reduced a second time by tine ratio 2:M

with M the number of the wanted eigenmodes. The total
reduction in computer time is hence Z:NM, which is equi–
valent to a reduction by two orders of magnitude for

most applications. The validity of these approximations
is again illustrated by a comparison to exact values,
which

Table

has been drawn in Table 3.

m,n kc(exact) kc(approx. )

1,0 0.252
1,1 0.81’9
3,0 0.998 1.002 Ill?-modes
5,1 2.041 2.039
1,3 2.658 2.646

1,1 1.279
2,1 1.923 1.925
1,2 1.986
3,1 2.044 2.050
3,2 2.545 2.535
5,1 2.907 2.913

EH-modes

3: Comparison between exact and approximate cutoff
wave numbers of a bilateral fin-line (wR-28
waveguide, c=o.254 mm, 1=3.4155 mm, dl=o.56

~, b1=l+5 mm, gr= 2,22)

Similar closed-form solutions can also be derived for
frequencies above cutoff (if one wants to circmvent

the concept of an equivalent dielectric constant). One
must then simultaneously solve the equations for the
HE– and the EH–modes.

Simplification for fundamental mode. The last step is a
simplified calculation of the fundamental mode. It is

based on the asymptotic behaviour of function Fs in (3).

We will first regard the case that the slot width is
much less than the waveguide height. Then the maximum

of F is at Sm<l so
s

F1(t, p)~f; (t) f:(p).

Equations (1) and (2)

Atft/f\(t)~ZX f’(p
PP>l 1

hat

(9)

can now be solved approximately:

; Gtgt/f+(t)*$xp,7f;(p) . (10)

These relations can easily be evaluated for the expan-
sion coefficients.

The method can also be used when the slot width is not

much less than the waveguide height. Then one solves
the k–th row of the matrix equation (1) for ~,1 and

inserts this expression into the other equations. This
yields

so that we have an explicit solution for At.

The validity of this last approximation is confirmed by
a comparison between our approximate values for the pro–
pagation constant of the fundamental mode of a unilate–
ral fin–line and values derived in Reference 5 by using

the spectral domain method. The results given in Table 4
show a good agreement. (In fact, the effective dielectric

constant has been shown which is defined as the squared

ratio between the propagation constant and the wave

number. )

d D 0.2
0.8 1.6 mm

0.1
1.129 1.I52 1.165 this theory
1.13 1.15 1.1-( Ref. 5

0.25
1.061 1.066 1.0’74 this theory
1.06 1.06

mm
1.07 Ref. 5

Table 4: Comparison between this theory and Reference 5
for eeff= (k~/k2) of a unilateral fin-line at

33 GHz; slot width d, slot height D, WR-28
waveguide, RT–duroid 5880.

In conclusion, it can be stated that the eigenmode ana-

lysis of a planar structure has been simplified conside~
ably. It can now be performed on a desk computer. The

introduced error has been proven to be less than 1%.
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Atft=AifiF1(t,i)/F,(i,i)+ ZX [1Pp,l ... . (11)
The term in brackets is ~ery small and can be neglected
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